Developing a Racing Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Michael Lellmann*

Slava Belopolski

Abstract

In this paper we present a racing game through the streets of
Aachen. The game takes place in the center of Aachen where you
drive through the walking area around the city. It is a single-player
racing game.

Keywords: game programming, Aachen, street racing game

1 The Graphics-Engine

The game is rendered with a deferred shading technique. There-
for the scene will first be rendered to a GBuffer and afterwards we
use that buffer to do the lightning calculations. After the lightning
is done we will do some post processing to make the image look
better.

1.1 The GBuffer

We store rather many data in the GBuffer, but that does allow us to
not only have normal and texture data for each pixel, but also data
which are important for the lightning calculations. This data in-
cludes the material properties which like the ability to reflect differ-
ent types of colors as well as the influence of different light sources
which are ambient, diffuse and specular.

We have the ability to use textures to set those values for each pixel
individually making it possible to have very good visual effects.

*michael.lellmann @rwth-aachen.de

(a) (b)

Figure 1: The bunny rendered with different lightning models.

1.2 Lightning

For the lightning we support 3 different models. The first (cf. figure
1 (a)) is the simplest one which will only take the texture color and
does not do any further calculations. This simple model is best
suited for surfaces that should not be lighted like the sky box.

The second lightning model is used for dull surfaces. It is the Blinn-
Phong lightning model (cf. figure 1 (b)) which does support ambi-
ent, diffuse and specular terms. It is used for most models.

The Cook-Torrance lightning model (cf. figure 1 (c)), our last im-
plemented lightning model, on the other side is used for shiny sur-
faces because it works for those the best.

We do support shadows for each light individually. We use a simple
shadow algorithm that uses 4 points around the pixel to check them
for shadows and we calculate from those 4 points the shadow value
which results in smooth shadows.

Figure 2: The aachen model.

1.3 Post-Processing

We use high dynamic range rendering for the lightning. In the post
processing we apply Jim Hejl’s ALU filmic tone mapping. The tone
mapping also includes adapting the screens luminance according to
the average luminance of the screen. We also darken the sides of
the screen to make the player focus more on the center of the screen
with a vignette effect.

For Anti-Aliasing we used the nVidia FXAA one which we adapted
to work with our code.

1.4 Oculus Rift Support

We also support the Oculus Rift. For that we render the scene
twice into the GBuffer, for each eye into the appropriate side of
the GBuffer. All other processing is than done in one step on this
GBuffer. We take care that the shader use the correct values for
computations depending on the coordinate of the pixel. Doing it
that way allows us to only need to render shadow maps once for
both eyes. It also makes the post processing easier because the
adaption of the brightness of the screen is done in the same pass
thus we don’t need to care that both eyes get darkened or brightened
the same. This method has one negative aspect, because it will to
the Anti-Aliasing in the middle of the Buffer with values from the
left and the right eye. But as the border of the screen is darkened
and with the effect of the distortion shader needed for Oculus Rift,
we have no visual impact with that.

2 The Physics-Engine

For the physics we use the bullet physics engine [bul August, 2013].
For the car model we use a simple model which is included in bullet
that allows to set breaking and accelerating forces at the wheels and
that allows the car to move around.

3 Models

3.1 3D model of Aachen

The 3D model of Aachen has been provided by the computer graph-
ics chair of the RWTH-Aachen university. The model consists of
an untextured mesh with the whole city. As the game takes place
only in the center of the city, the mesh has been reduced to the rac-
ing area. This allows fewer computation due to smaller size of the
mesh. Furthermore the mesh had to be textured (Figure 2 (b)).

©

Figure 3: The car model and the barriers.

3.2 The car model

The car model has been taken from [TF3 August, 2013]. It has
been prepared for rendering, like the wheels have been removed
and stored in a separate .obj file due to requirement of the Bullet
Physics. Furthermore some materials have been removed or substi-
tuted as the interior of the car is not visible in the game, to reduce
the file size (Figure 3 (a)).

3.3 The barriers

The barriers model has been taken from [Tur August, 2013]. The
barriers have been placed around the track to mark the borders and
to allow the player to follow the track easily (Figure 3 (b)).

3.4 3D text

Before the game starts the counter appears in the game with the
spinning camera around the car. 3-2-1-Go! After that the camera
position changes and the player will be able to drive the car. Each
of the numbers is an .obj file and the files will be rendered one after
another (Figure 3 (c)).

4 Work distribution

Michael did concentrate on the programming, especially the full
rendering engine, the use of the physics engine and supporting Oc-
culus Rift.

Slava did work on the 3D models like on the map, sky box, car,
counter, texturing and modeling the track. This also includes load-
ing and rendering models in the game.

References

August, 2013. bullet. http://bulletphysics.org/wordpress/.

August, 2013. Tf3dm. http://tf3dm.com/3d-model/lamborghini-
aventador-42591.html.

August, 2013. Turbosquid.
models/barrier-obj-free/612650.

http://www.turbosquid.com/3d-

