Developing a Jump’n’Run Puzzle Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Samiro Discher* Alexander Kugler®

=

™
E

Christof Mroz?

|
_J

Christopher Kugler?

rA
LJd

f

Figure 1: Solving a basic level, composed of four rooms. Note: Gaps between rooms are illustrated for emphasis only and don’t appear in
the actual game. (Left) The player character is subject to gravity, and thus can’t reach the red exit on the ceiling as-is. (Right) By walking
to the lower left room and flipping it along its upper left corner; the exit finally becomes accessible. This is possible because gravity always

reorients according to the main character, as per the game rules.

Abstract

The objective was to develop a side-scrolling jump’n’run with puz-
zle elements, where heavy emphasis is placed on a modern presen-
tation employing state of the art 3D graphics effects and filters.

Each level is divided into distinct, quadratic rooms arranged on a
grid, as exemplified in Figure 1. Any time during gameplay, the
room containing the main character can be rotated (subject to some
rules, of course) in order to rearrange its grid position and orien-
tation, so that what was previously a ceiling or wall can suddenly
become a floor with respect to adjacent rooms, and vice versa.

We decided to use a deferred rendering pipeline due to stylistic de-
cisions. For example, the game takes place in an abandoned space
ship, i.e. a sci-fi setting, and consequently draws a lot of its atmo-
sphere from lighting. Deferred lighting makes handling of many
light sources comparatively easy. Conversely, well-known disad-
vantages of deferred rendering, like transparent objects, proved to
be unproblematic due to the predictable 2.5D camera angle.

Keywords: game programming, jump'n’run puzzle game, de-
ferred rendering

1 Gameplay

Game mechanics were largely inspired by the indie puzzle
jump’n’run Continuity [Lima and Mikaelsson 2010]. While we en-
joyed the basic idea, the low difficutly disappointed us on other
hand. Ultimately, only the core principles remained to create what

*samiro.discher@rwth-aachen.de
Talexander.kugler @rwth-aachen.de
Echristopher.kugler @rwth-aachen.de
§christof. mroz@rwth-aachen.de

we hope results a more challenging experience. Refer to Figure 1
for an overview of the resulting rules.

The game state can be in either of two modes, namely action mode
(default) or meta mode. In action mode, the main character can be
controlled just like one would expect it from any other jump’n’run
in terms of controls and physics. At any time, meta mode can be
entered. The simulation stops and the camera zooms out to give an
overview of the level. Then, the player can select one of the current
room’s corners to rotate this room around it. Here, the current room
refers to the one containing the main character.

Rotation alters orientation of a room. Because gravity also always
follows the main character’s orientation, this allows one to walk
on surfaces that were previously ceilings or walls. Thus the player
reaches seemingly inaccessible areas, defeats enemies (note that the
character is unarmed) and solves other such puzzle-related tasks.
Any room that may look useless, at first glance, could be repurposed
in unexpected ways if considered from right perspective. While a
closed door is usually a bad thing, when rotated it can be used as a
bridge (which, to the contrary, is of course ideally not open), and so
on. Besides, the rooms themselves contain usual platformer puzzle
elements like switches. These sometimes also operate on adjacent
rooms to create even more complex dynamics.

2 Rendering

Modern, high quality visual representation was by far the highest
priority goal of the practical course right from the beginning. With
this in mind, and despite the predominantly 2D game logic, we set-
tled on a deferred 3D renderer (without light pre-pass).

A move which was also motivated by stylistic choices. The game is
set in an abandoned spaceship, i.e. a gloomy, industrial sci-fi sce-
nario. Consequently, liberal number and placement of light sources



is crucial to create the right atmosphere. Deferred lighting is a com-
paratively straight forward solution to this problem that scales well
at the same time. Shadow mapping was also implemented and used
occasionally to place accents, along with screen-space glow. Fur-
ther, we targetted a slighty stylized but still realistic look and feel.
Screen-space effects like SSAO and motion blur boost believability
a lot with only constant costs, in this regard.

Deferred renderers are usually at a disadvantage when dealing with
transparent objects. This turned out not to be an issue in our spe-
cific case however, since the 2.5D side-scrolling camera angle made
Z-order very predictable. A second pass with only transparent ge-
ometry is all it takes. Real-time refraction is achieved simply by
sampling the opaque pass’ result along a direction depending on
the pixel’s screen-space normal. Recent advances in screen-space
anti-aliasing, like FXAA [Lottes 2011], offer surprisingly good re-
sults, especially when parameters can be tuned to a certain Z range
(which, again, is mostly fixed in side scrolling games).

Geometry shaders support texture, environment and normal map-
ping, among others. To overcome combinatorial explosion, and
since we aimed for a single geometry pass for opaque and trans-
parent objects each, we originally planned to create a master shader
with tagged code regions that could be re-assembled by a script to
yield the needed combinations. This idea was scrapped due to time
constraints, though.

3 Tools and Asset Pipeline

We developed plugins for the freely available 3D modeller Blender,
allowing us to model, place and export assets from the same appli-
cation. Unfortunately, there is not always a sensible mapping from
Blender to game engine material parameters: The former knows
about glow intensity but not about color, for example (which is im-
portant for our futuristic setting). We use name mangling prefixes
and custom properties to solve such ambiguities.

Bone based IK animation for characters can be baked by sampling
the Blender IK solver’s output at keyframes. More than one such
animation can be associated per character. At runtime, keyframes
are interpolated via SLERP, and multiple animations are mixed via
weighted NLERP to ensure smooth transitions and, while not used
in our final revision, to compose distinct animations for e.g. torso
and legs.

Besides assets, we can export levels via a designated plugin as well.
While it seems like a good idea at first, re-purposing an existing tool
raises a key trade-off: create a full-fledged, fully integrated plugin
with knowlege of game engine semantics or rather rely on hacks and
conventions to save time? We chose the latter. Hacks are acceptable
for us as long as they are documented clearly.

In reality though, documentation got out of sync quickly, and even-
tually the code became the documentation. Hence the artist needed
to understand the exporter code (or, of course, ask the developer
whenever something breaks), which is not a reasonable requirement
and was not the case in our team either. Without doubt, completely
custom tools (even a simple XML description of levels), or at least
more effort spent on UI, could have saved us time in the long run.

4 Software Engineering

Neither of us wrote a complete game before (well, besides Tetris
perhaps), so maybe it’s no surprise that the engine didn’t turn out
too clean; to the point that we started to rewrite the engine from
scratch. Despite much higher productivity at the second attempt
(and, admittedly, more fun due to less boilerplate and toy block like
modularity) we were not able to complete it on time, however.

Challenges were frequently underestimated because our idea of a
2D jump’n’run is strongly influenced by classics like Mario Bros.
and Megaman, and our game logic is not really more complex if
one ignores presentation. When striving to create a lively, interac-
tive and believable world, however, which in turn requires lots of
animations, feedback and dynamics as well as variable time step,
presentation logic starts to creep into game logic quickly and com-
plicates matters.

We adopted an object oriented MVC approach suggested by our
supervisors. In classic MVC the Controller reads and writes to the
model, which is then read by the renderer, directly. The renderer
needs deep knowledge about the model, which was not acceptable
in our case: the graphics group was burdened by learning about
graphics programming enough already, and had no time to learn
C++ and keep up with the game logic. Instead, an extra presenter
layer reorganizes the model into flat lists of scene nodes first, which
are then interpreted in a dumb terminal fashion. This turned out to
be the only design decision we got right from the start.

For the first engine, we coerced entity types into an OO class hierar-
chy. Despite clear requirements from the beginning, more and more
features were moved upwards in the hierarchy to speed up develop-
ment time (blob anti-pattern [West 2007]), or simply because it was
not clear where to place it. What is the solution? Think harder?

Maybe, but we ditched OO hierarchies altogether instead. The new
engine was rather based on a true entity system, i.e. according to the
original meaning of the term from database theory [Martin 2007].
In OOP terms, entities can be vaguely described as mere containers
for collections of data called components. Distinct types are not
pre-declared like in OOP but it is rather possible to guery entities
for certain abilities on demand. For example, a door is described in
terms of its components as

Door = 2D Coord + Door logic +
Rigid body + Asset 4+ Animation + - - -

5 Conclusion

Recombining existing level parts to form new layouts is a promis-
ing and fun concept that deserves further experimentation. Side-
scrolling games are agnostic to some common drawbacks of de-
ferred renderers. Tools should either be fully developed plugins,
actively imposing game engine semantics into their host applica-
tions, or completely custom to begin with. In a graphics-heavy
game much complexity stems from presentation logic, compared to
“actual” game logic complexity. It must therefore be carefully in-
corporated into design stages from the beginning. Managing game
objects in an entity system fosters creativity, while OOP inhibits it
due to costly refactoring.

References

LiMA, G., AND MIKAELSSON, S., 2010. Continuity - a sliding-tile
puzzle game. http://continuitygame.com/.

LoTTES, T. 2011. Fxaa. NVIDIA White Paper.

MARTIN, A., 2007. Entity systems are the future of mmog devel-
opment. http://t-machine.org.

WEST, M., 2007. Evolve your hierarchy.
cowboyprogramming.com.

http://


http://continuitygame.com/
http://t-machine.org
http://cowboyprogramming.com
http://cowboyprogramming.com

