
Developing a Mini Racing Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Eric Béguet∗ Andreas Heuvels† Christian Janßen‡ Markus Schamberg§ Paul Voigtlaender¶

Figure 1: Picture of a typical game scene showing cars in the front and meteorite impacts in the background. Also visible: the user interface.

Abstract

Our idea was to create a racing game with a Mars theme, because
of the landing of the Mars rover ”Curiosity”. We wanted a com-
petitive racing game, that can be played against others and is also
visually appealing. The game is settled in the future where humans
construct the first buildings on Mars. In a race against others, the
player controls a Mars rover, and has to avoid meteorites which are
falling on the track.
To create our game we implemented techniques like instancing, mo-
tion blur, soft particles and shadow mapping. Additionally we sup-
port a two-player mode and AI challengers for a competitive game-
play.

Keywords: game programming, racing game, Mars

1 Gameplay

As in any classical car racing game the player drives the rover on a
track and tries to win against his opponents. Because the track has
no borders, the player is forced to drive trough checkpoints. If the
rover gets stuck or crashes and can not move anymore, it respawns
at the last visited checkpoint.

The track consists of areas where powerups can be found. Those
powerups give the player certain advantages: a speed boost, a man-
ual respawn without delay and the ability to trigger a meteorite
which will hit one of the other rovers.

∗eric.beguet@epfl.ch
†andreas.heuvels@rwth-aachen.de
‡chrisitan.janssen1@rwth-aachen.de
§markus.schamberg@rwth-aachen.de
¶paul.voigtlaender@rwth-aachen.de

(a) speed boost (b) instant respawn (c) meteorite

Figure 2: The powerups used in the game

Additionally, a meteorite spawns every 20 seconds without being
triggered by a player. The meteorites’ targets are chosen so that
the players at the tail have a greater chance to catch up. The chal-
lengers in the game consist of vehicles controlled by basic artificial
intelligence and optionally by another human player on the same
computer. Even though the AI is based on a very simple algorithm,
it is still a challenge for most players.

2 Workflow

As basic architecture for our software, we kept the Model-View-
Controller approach which was provided in the template. In ad-
dition we used Qt’s signal and slot mechanism to communicate
loosely coupled between the logical part of the game and the graph-
ics.

We split the workload into three parts. Two major groups for the
graphics and physics each consisting of two developers and one for
detailed content creation.
In our game the scenery consists of a large terrain with a de-
tailed ground and only a few objects, therefore we did not focus



on an elaborate method to create and export the whole scene from
Blender. The time saved on this process justifyed the distribution of
the developing group members and gave us the possibility to mainly
focus on the graphical and physical parts.
To organize a consistently running project, weekly meetings were
held allowing us to coordinate the development between the groups
and increasing the efficiency.

3 Graphics

For the basic atmosphere we used a skybox representing a Mars
scenery filled with mountains. The lumpy terrain on which the race
takes place is rendered using a uniform triangle grid, whose height-
values are sampled from a heightmap-texture in the vertex shader.
We use multiple tileable textures to achieve a high resolution ren-
dering of the ground. A lot of rocks decorate the ground, which at
first caused performance problems. To solve this, we implemented
instancing and multiple levels of detail, i.e. the amount of rocks
decreases with the distance to the car. The scenery is enriched by
several objects like pipelines, wind turbines and greenhouses (cf.
figure 3). All those objects and the heightmap were created using
Blender.

(a) wind turbine (b) pipeline (c) greenhouse

Figure 3: An example of objects used in the game

To enhance the visual appeareance of the greenhouses and the cars,
we added cubemap reflection. The scene is illuminated by a di-
rectional light source which models the sun using phong shading.
Additionally we implemented shadow mapping using an orthogonal
projection. The shadow is only visible near the player’s car as the
scene is too large to be covered entirely by a single texture. In prac-
tice, however, this effect is hardly noticeable. Giving the game the
feeling of high velocity, we implemented adaptive motion blur by
averaging the color values of the last few frames, which are stored
in textures. The scene is observed by a third-person camera which
follows the car in a smooth way, i.e. not with a fixed angle.

Figure 4: a meteorite with particles

Particle effects are also widely used in the game to intensify the
level of details of the overall scenery. They are used in several
places. The most basic effect is the fire effect which is used behind
the falling meteorites. Furthermore it is used when the rock hits the
ground to create a kind of explosion effect. After that explosion the

so-called smoke effect comes into play a few seconds at the impact
point. Particles are also employed to create the dust effect made by
the rover rolling on the land. But it is also used to create the per-
manent storm effect in front of the player’s camera. Furthermore
particle effects are attached to a variety of objects in the scenery
(powerups, cooling tower..). Because the particles wouldn’t mix up
correctly with the landscape the Soft particles technique is used. It
makes particles which are near the ground more transparent allow-
ing a nice blending effect between the particles and the soil.

Our split screen implementation enables the hot seat mode. We
added an UI which displays information like the current rank and
speed of the player and a minimap.

4 Physics

The physics of our game is based on the Bullet Physics Engine. As
a physical surface we use a heightmap, which is already supported
by bullet. This gives us an efficent option to deform the ground
in realtime, which is necessary for the implementation of craters,
appearing after the impact of meteorites.
Meteorites spawn during the race, deforming the map and after
multiple impacts the track becomes impassable. To eliminate this
effect, the heightmap rejuvinates over time resulting in only a few
impact locations on the map. To provide data for the heightmap,
we use a png-image, where the height-value of the vertices are
represented by the colour-value of the coresponding pixel. This
png-file is an orthogonal high-angle shot of the map which was
designed in Blender, where it was possible to work precisely on the
result.
Additionaly we use another png-file, which stores the spawnspoints
for random powerups and legal impact locations for the meteorites.
All impact locations depend on the rovers position, its velocity, and
its next reachable checkpoints.

Creating the car and a realistic driving behaviour was difficult in
bullet. Due to the bumpy terrain the default raycast vehicle pro-
vided by bullet had a lot of unrelistic collisions. We solved this
with additional raycasts for the wheels and reducing the size of the
physical representation of the lower side of the car. Furthermore, to
increase the driving stability we added adaptive forces depending
on the velocity of the car and its ground contact. At higher ve-
locities the car is pushed down on the track by a manually created
force. Moreover to prevent somersaulting we also added a force
around the z-axis.

5 Conclusion

This racing game was the first large project for all our team mem-
bers. The lack of experience in working on a project of this scale
led to some, because of the limited time, not feasible ideas. After
discussing those with our supervisor, they were broken down to a
realistic and viable concept.
In process of developing the game we gathered a lot of experience in
creating, modeling and managing a project with team members. For
the implementation we used various graphic techniques and tried to
generate a suitable atmosphere for our Mars theme. We managed
to set up an enjoyable driving experience through our modifications
of the vehicle provided by bullet.

Despite the first problems we created an appealing game, that pro-
vides a unique challange, since the player has to react to the chang-
ing terrain which is caused by the imapct of the meteorites. In addi-
tion we were also able to implement features which were not initally
intended like splitscreen mode, a minimap and AI-competitors.


