Developing an Arcade Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Stefan Rakel*

Abstract

In this years’s practical course Developing an Arcade Game we
were given the task to develop a game from scratch. Our game
called Shadow Game implements various sophisticated technolo-
gies which are presented briefly in the following sections. These
sections are divided into graphics, game logics and editing tools.

Keywords: game programming, shadows, navmesh, deferred
shading, ray casting, collision detection

1 General Information

The goal of Shadow Game is to reach a chest in the shortest time
possible without getting caught by guards. For this the guard’s field
of view is visualized by the contrast between light and shadow. The
experience is enhanced by various power-ups which alter the be-
havior of the guards. Furthermore you can collect coins to reduce
your elapsed time.

2 Graphics

2.1 General Graphics

Shadow Game implements many different graphics technologies
which will be discussed in this section. In addition we will take a
look at problems that arose during development and how they were
overcome.

2.2 Normal and Specular Mapping

All objects in our game heavily utilize normal and specular map-
ping. Latter simply tells our graphics-engine how much light can
be reflected at a particular point as specular light. Former allows us
to give the impression of a much more detailed surface than actu-
ally present by doing all light calculations as if the surface at any
given point is slightly rotated. These techniques together with clas-
sic phong-shading result in a visually appealing and realistically
looking rendering of our game scene.

2.3 Particle System

A capable particle system for rain and various other effects is also in
place. This system is able to spawn particles in a given room of the
scene and simulate particle velocities efficiently. It also automat-
ically manages particle lifetimes and variations. All calculations
for the particle systems are parallelized in multiple threads to al-
low a high count of particles. This parallelization is automatically
adapting to the count of particles and determines whether multiple
threads need to be launched or not.

*stefan.rakel @rwth-aachen.de
T patrick.schmidt1 @rwth-aachen.de
tgeorg.gross@rwth-aachen.de

Patrick Schmidt'

Georg GroB*

Figure 1: Contents of the g-buffer: (a)Color, (b)Position,
(c)Normals, (d)Specular. And the final result(e)

2.4 Variance Shadowmaps

All shadows in Shadow Game are computed with cubic variance
shadow maps. The variance shadow maps are not blurred because
the game concept demands hard shadows, but this could be easily
achieved by simply applying a gaussian blur shader to the maps.

2.5 Deferred Shading

The central idea of Shadow Game is to hide in the shadows of light
cast by the guards. Because of this the number of shadowcasting
lightsources is comparably high. With classic forward rendering
techniques many light sources can quickly become a performance
issue, because for every object we have to calculate the effects of
every light source on it which leads to roughly L - O draw calls
with L being the number of light sources and O the number of
objects. To overcome this performance bottle neck we implemented
deferred shading. Deferred shading renders the scene without light-
calculations into a buffer called g-buffer. This g-buffer contains the
color, the position, the normal and the specularity of every pixel.
Based on this information we then calculate the light only for those
pixels that will be presented on the screen. This saves us all lighting
calculations for objects occluded by other objects, which brings us
to about L + O draw calls.

3 Game Logics

3.1 Architecture

To allow independent work on different parts of the software, we
built up an architecture that separates game logics from graphics.
For the logics part, we created an entity system that handles all
kinds of objects which have an actual meaning to the course of
the game. These entities are organized in an elaborate class hier-
archy and managed by a central component being responsible for
the overall gamestate.

3.2 Collision Detection

We implemented our own 2d collision detection to e.g. check if the
player has hit any of his surrounding objects. Every object in our
game can have an arbitrary convex bounding polygon and we can
ask for intersection of any pair. This is done by a quick bounding
circle check followed by applying the separating-axis-theorem to
both polygons. In the case of intersection, we also obtain a mini-
mum translation vector that resolves the collision.

3.3 NPC Behavior

To make non-player characters (i.e. guards) act reasonably, each of
them uses an internal state machine. Each state defines a specific
behavior like patrolling, chasing the player or running to a point
of distraction. Transitions from one state to another are triggered
by events like establishing/losing visual contact to the player or the
effect of power-ups.

3.4 Visibility Ray Casts

A difficult task in our project was how to detect if a guard can see
the player. As an additional requirement, we needed to get a rough
percentage of how much of the player is visible. We chose to posi-
tion multiple triggers on the player model and do 3d ray casts from
the guards to these triggers. This way, we know how many rays
actually hit the player and how many got blocked by scene objects.
To speed this up, we are using a three-step approach per ray: 1.
check if the trigger is sufficiently close to the guard, 2. do bound-
ing sphere checks with surrounding scene objects, 3. perform a
ray-triangle intersection test on the actual geometry of potentially
blocking objects. For the last step, we use the well-known algo-
rithm by [Moller and Trumbore 1997]. Some of our models even
provide an additional low-resolution mesh wich is used to reduce
the number of triangles to be checked. This way, we achieved de-
cent performance even without further acceleration structures. We
also do the whole test in parallel.

3.5 Navigation Mesh

Patrolling guards simply walk on a set of fixed waypoints. How-
ever, if a guard chases the player he needs the ability to move freely
and find a path to the player without hitting any static scene objects.
We achieved this by implementing a technique called Navigation
Mesh. This is a 2d triangle mesh that covers the whole walkable
area of a level. Blocking objects, such as containers, are repre-
sented as holes in the mesh. Based on the vertices of this mesh, we
build up a graph that connects two nodes with an edge if they can
be connected by a straight line without leaving the mesh. This is
done as preprocessing while loading a level. In the running game,
each time we need to find a path, additional source and target nodes
as well as the appropriate edges are added to the graph. Since we
know that every shortest path can be represented by nodes of the
resulting graph, we now use the A* algorithm to obtain the final
path.

4 Editing Tools

4.1 Scene representation

Shadow Game uses a custom XML format for an easy and ad-
justable scene representation. This format allows our game to
quickly load various game levels. The XML format is parsed in
the startup process and each XML-node type will create a different

game object. This set of game objects will be assigned to a level,
which is used by our game logic implementation.

As our game uses different logical game objects, this logical sep-
aration also exists in our scene format. A scene file can contain
several instances of these different logical types, except the player
object. This type exists only once as there is only one player. In
addition, the scene file holds the path for our navmesh object.

4.2 Scene creation

For scene creation we developed a Python Blender Plugin, which
gives us the ability to create and modify our game scene in the
3D editing suite Blender and export this scene directly to a format,
which is readable by our scene loader.

The plugin was developed using the standard Blender Python API
[ble]. This API gives the exporter the possibility to extend ex-
isting Blender functionalities with custom functions. In short, the
exporter plugin gives Blender the ability to:

e differ Blender objects to different game objects

e automatic convex bounding box generation (Jarvis march al-
gorithm)

e exporting objects as .obj or own mesh format (with bone ani-
mation support)

e converting Blender paths to our waypoint paths and assign to
Guard

e automatic NavMesh generation using the Blender game logic
implementation

By loading this plugin in the Blender startup process, it will auto-
matic hook in to the default Blender export menu. As it is triggered
from this location it will loop through all Blender scene objects and
gather the basic object informations (like position, rotation and so
on), which are required for every logical game object. Then the
exporter will start to decide what kind of logical game object the
specific blender object is. From this point, it will start to gather
specific information, that are different for each logical game type.
In the end all gathered information will be saved in our XML struc-
ture.

The Blender Python API stressed us a bit, as it is very version de-
pending and a documentation is rather rare. Therefore, we had to
test a lot to gain missing information.

4.3 Own Mesh file

In the development process we came up with the idea to support
bone animation for better looking player and guard movements. As
the .obj format does not support bone animation we developed an
own mesh file based upon XML. Unfortunately the time went short
and so we decided to not implement animation support. So the
master release still use the obj format but the exporter has the ability
to export meshes in our own format.

References
Blender 2.69.10 - APL http://www.blender.org/
documentation/blender_python_api_2_69_10/.

MOLLER, T., AND TRUMBORE, B. 1997. Fast, minimum storage
ray-triangle intersection. J. Graph. Tools 2, 1 (Oct.), 21-28.

http://www.blender.org/documentation/blender_python_api_2_69_10/
http://www.blender.org/documentation/blender_python_api_2_69_10/

