
Developing an Arcade Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Lisa Mannel∗ Thomas Prinz† Alexander Schmidt‡

Figure 1: Logo of our Game Arcade Racer

Abstract

In our game ”Arcade Racer” the player controls a car driving
through a natural environment. The aim is to reach a sequence of
checkpoints as fast as possible to create a new highscore. The best
highscore is represented by a ghost car, which mimics the behavior
of the player who set up that score. There are several obstacles such
as trees or mountains, as well as different ground types, that change
the cars behavior or even destroy it. To keep the game interesting,
new randomized maps can be created. (cf. Figure 1).

Keywords: game programming, arcade, game, racing

1 Gameplay

1.1 Map Randomization

The map consist of a plane with several objects placed above. It is
surrounded by high mountains the car cannot pass through. There
are different types of ground, each of which is rendered on its own

∗lisa.mannel@rwth-aachen.de
†thomas.prinz@rwth-aachen.de
‡alexander.schmidt1@rwth-aachen.de

plane object. This planes are then blended together according to
information saved in a jpg-file, leading to the image of one plane
with different ground types. Thus the distribution of the ground
types on the map can be changed easily by changing the jpg-files
with an image editor.

The checkpoints as well as the objects are placed randomly above
the plane whenever a new map is created. They cannot be placed
onto lava and some objects do not spawn on water either. To make
sure each checkpoint can be reached, a randomized path is created
between them, on which no object can be placed. Similar objects,
like trees and trunks for example, form forests to create a more
realistic world. The information about the map is then saved into a
txt-file, such that exactly the same map can be reloaded. Only one
map can be saved at the same time.

Some of the objects are self-made, either because no suitable model
could be found in the Internet, or because the models found were to
complicated and led to a bad performance. Some examples are the
car, the wheels, the trees or the mountains. Most models found in
the internet have been modified due to performance issues. (Which
objects and/or textures exactly were created by us and which not is
documented in the sources.txt file)



1.2 Main menu

In the main menu the player can choose whether to create a new
map or whether to keep playing the old one. The players names
can be entered and the highscores are displayed. A new game can
be started or the program can be exited. The main menu is texture
based except for dynamic information (e.g. highscore), which is
realized via 2D text rendering.

1.3 Highscore and Ghost Car

If a player reaches a new highscore, the information about the cars
behavior is saved in a txt-file. The next time the map is played this
information is used to create a ”ghost car” that acts exactly as the
player did who set up the best highscore. Whenever a new map is
created, this information is deleted.

2 Physics

2.1 Driving Physics

The physic quite realistically simulates different gear levels with ac-
celeration and maximum velocity depending on current gear level.
It takes different ground types into consideration. Steering is ap-
proximated because of its complexity. [Monster ]

2.2 Collision Handling

The collision handling is realized by drawing a 2D bounding box
around every object. A very simple bounding circle check discards
any two objects that are too far to collide. Then the separating axis
theorem is used to determine if two objects collide. This was refined
to allow multiple bounding boxes per object to allow the car to drive
below a bridge. As a result the car loses speed proportional to how
perpendicular it collides with an object.

3 Graphics

3.1 Lighting & Shadows

3.1.1 Dynamic Lights

Our lightsources are dynamic and can move arbitrarily through the
level creating dynamic shadows.

3.1.2 Shadow Mapping

We faced some problems creating visually attractive shadows for
a map that is that huge. As a solution we implemented Cascaded
Shadow Maps, which provide a higher effective resolution in the
area near the camera and less resolution further away. To create
smooth shadows we implemented Variance Shadow Mapping. This
introduced ’Light Bleeding’ as another problem. We tried to solve
this problem as good as possible by saving how close the pixel is to
the light and applying a reduction function with different strengths.
We also added a dynamic day/night cycle with a linearly approx-
imated sun which makes our sunlight shadows dynamic shadows.
The Variance Shadow Mapping is based on chapter 8 of the GPU
Gems series. [Nguyen 2007]

3.1.3 Phong Lighting

Phong Lighting is used for the sunlight. The headlights/backlights
use a different approach in order to guarantee good visuals at night.

3.2 Motion Blur

We implemented Motion Blur as a post processing effect. While
rendering we determine the screen space velocity of each pixel by
comparing the last frames position with the current frames position.
In a post processing step we blur the image along this velocity vec-
tor. To exclude certain object from blur entirely we weight the blur-
ring with a factor proportional to how equal the two velocities are.
The motion blur is loosely based on chapter 27 of the GPU Gems
series except that we precompute the velocity instead of recovering
it via z-buffer. [Nguyen 2007]

3.3 Particle System

We created a particle system that is used for weather effects like rain
and snow as well as explosion effects and checkpoints. The particle
system is capable of rendering animated particles by simply cycling
through appropriate texture coordinates. The particles are rendered
as points which are extended to 2D quads and billboarded using
a Geometry Shader. This limits the data that is sent to the Vertex
Shader to 4 floats (3 for position and 1 for lifetime of the particle).
The particle physic is CPU-based.

3.4 Explosions

Using the particle system we added explosions as another particle
type and graphical effect. Explosions occur as a death animation
when you drive over lava.

3.5 Ground Normalmapping

To make the planar ground look more realistic and interesting, nor-
mal maps are used.

3.6 Skydome & Dynamic weather

A skydome has been implemented to display the skylike back-
ground. We also added a weather class which dynamically but ran-
domly changes the current weather. Depending on daytime and
weather the skydome fades between different textures. Different
weather types are: Clear, Cloudy, Rainy and Snowy.

3.7 2D Text Rendering

For highscore and general user output (e.g. ’Game Over’) we im-
plemented a way of doing simple 2D text rendering. For text ren-
dering we blend simple quads over the final frame. To save draw
calls text rendering uses instancing to draw multiple letters at once.
A pre-antialiased, dynamic width texture font is used.

3.8 MiniMap & Arrow

We added a perspective minimap which gives the player an
overview of its position. This is simply realized by adding a camera
that flies over the car and renders the scene. An arrow guides the
player to the next checkpoint.

References

MONSTER, M. Car physics for games. http://www.
asawicki.info/Mirror/Car%20Physics%20for%
20Games/Car%20Physics%20for%20Games.html.

NGUYEN, H. 2007. Gpu Gems 3, first ed. Addison-Wesley Profes-
sional.

http://www.asawicki.info/Mirror/Car%20Physics%20for%20Games/Car%20Physics%20for%20Games.html
http://www.asawicki.info/Mirror/Car%20Physics%20for%20Games/Car%20Physics%20for%20Games.html
http://www.asawicki.info/Mirror/Car%20Physics%20for%20Games/Car%20Physics%20for%20Games.html

