
Developing a Mini Racing Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Christian Bormann∗ Daniel Peters† Dominik Studer‡ Jörn-Michael Miehe§ Michael Anhuth¶

Abstract

Miniature Madness is a arcade racing game. The player is control-
ling a mini racing car on a map in the setting of a children’s room.
In the racing mode the player tries to complete the map in the short-
est time possible. There is also a free driving mode, where one can
explore the map. To provide the player with the right feeling, our
focus was on creating graphics effects supporting the atmosphere
of the game. The game uses the chair’s ACGL framework. For our
game’s physics - especially the vehicle handling - we used the bul-
let engine. The scene is loaded from a XML file. Each object in the
scene was created in Blender.

Keywords: game programming, mini racing game

1 Graphics

In our scene there is only one fixed point light source, which is
arranged below the ceiling. For the lighting we use the Phong shad-
ing and the phong lighting model with different parameters for the
different materials.

Since our setting is a childrens room, we wanted the scene to be
realistic, but not too serious. So we placed many little and colorful
objects in the scene and chose the glow effect as post process to
achieve a lax and even so realistic atmosphere. The glow effect is

∗christian.bormann@rwth-aachen.de
†daniel.peters1@rwth-aachen.de
‡dominik.studer@rwth-aachen.de
§joern-michael.miehe@rwth-aachen.de
¶michael.anhuth@rwth-aachen.de

used in order to fluroresce the bright parts of the scene (cf. Figure 1
(c)). It is implemented as a brightness filter to catch only the bright
part and a gaussian filter is used to blur it. On the one hand we
needed a big gaussian kernel to see the effect, on the other hand it
is very expensive in computation. So we decided to blur first hori-
zontically and then vertically to have an linear instead of quadratic
complexity.

(a) (b) (c)

Figure 1: our graphic effects.

Then we implemented some effects to have a realistic looking
scene. The first effect we implemented was the bumpmapping (cf.
Figure 1 (a)). This effect is used to fake a bumpy surface of objects,
by using the normals of the surface. In our scene we used it for the
grain of the wooden objects, the surface of the wallpaper and the tire
profile.The normal maps, generated by blender, aren’t perfect, but
it is sufficient to have a nice looking effect. The second effect we
implemented was the environment mapping (cf. Figure 1 (b)). This
effect displays reflections on specular surfaces. Since there are dif-
ferent techniques to implement the environment mapping, we chose
the cube mapping. A cubemap consists of six textures, one for ev-
ery direction, to represent the environment. We used it in our scene
to display the reflections of the car windows.



Finally we wanted to have a trace of tires effect as a typical racing
game effect. We started trying to render the track into the texture
under the car, e.g. the floor, but in order to some texture issues,
we changed the implementation to a particle effect. Implementing
a particle effect is easier, because of the independence from the
underground, but also more ressource hungry. Unfortunately the
effect still doesn’t work allright. Probably there are unsolved errors
with the management of array buffers and vertex buffer objects.

2 Physics

The gameplay relies heavily on the Bullet physics engine and espe-
cially its vehicle simulation. We decided to use a predefined model
for vehicles, the bulletRayCastVehicle. In this model instead of
simulating the car consisting of a chassis and several wheels, we
use rays and check for intersection below the car to simulate car-like
behaviour. This way all the basic forces that are known in physics
can be considered but the simulation remains simple enough to al-
low modification of the vehicle behaviour quite easily (cf. Figure 2
(b)).
One of the biggest problems was to determine the road behaviour
of the vehicle - it didn’t feel right to use an arcade-like vehicle but
it should not be to punishing as well. Thus we had to play around
with the friction of the wheels and especially the increments of the
steering quite a bit to achieve a good road behaviour that forces you
to use the breaks or at least stop accelerating to not lose control in
some situations.
In general the physics world is created independently from the .obj
files that are used for the graphics to avoid unneccessary complexity
as most of the models can be approximated by very few primitives
known to bullet. Thus, when importing objects to the game a phys-
ical representation in form of bullet primitives has to be given.

(a) (b)

Figure 2: physical representation.

3 Gameplay

The game offers 2 modes, a free driving mode in which you can
freely explore the track and a racing mode in which you have to
complete a specified number of laps. To offer the player some feed-
back regarding his performance the current lap time as well as over-
all time and number of laps are presented in a GUI.
For each lap the player has to pass through a number of checkpoints
to avoid cheating but also grant the ability to reset the car to the last
checkpoint in case of a crash (cf. Figure 2 (a)).
A Trigger-system to control certain game events and especially con-
trol said checkpoints is part of the engine.
We decided to use pair tests between the car and every trigger in-
stead of checking for all collisions with a trigger for better perfor-
mance as a collision between triggers is not possible for our game.

4 Scene editing and loading

Editing and loading scenes for display consists of three compo-
nents:
The Storage Container layer, the ACGL Decorator layer and the Qt-

GUI Decorator layer.
The underlying container layer only serves as data storage for in-
stances to be put in scene. For every possible type of object (e.g.
materials or physical representations) there is a class using basic
Qt features to hold its full information. This layer uses QtDOM to
load/store the contents of the containers from/to a set of XML files.
Using this Storage Container layer, the QtGUI Decorator layer
[QtFoundation 2011] can create corresponding displayable forms
for every item. To keep the GUI simple, MDI subwindowing
techniques are used, and for consistency reasons, Qt’s signal/slot-
system is an intuitive way to go.
Likewise relying on the Storage Containers, the ACGL/3D Decora-
tor contains factory mechanisms for creation of the corresponding
ACGL/Bullet objects to be directly weaved into a fully featured
Scenegraph.
To avoid memory leaks and to speed up Scenegraph rendering, each
layer relies on a Factory/Singleton combination for object creation
and access:

Figure 3: UML diagram.

5 Conclusion

When designing our game at the start of the practical course, we de-
cided to choose the theme of a children’s room for our mini racing
game. We then thought about how to create the right feeling for the
player. During the process of development we strongly recognized,
that planning, prioritizing and documenting our work makes the
development process much easier. As none of our group members
had any experiences with graphics programming, most problems
occured in this part of our work. But we were still able to get the
features done, that support the atmosphere of the game the most.
Here communication between our group members was important,
so that we could help out each other.

References

ENGEL, C., 2010. Blender open material repository. Website.
http://matrep.parastudios.de/.

QTFOUNDATION, 2011. Qt4.8 documentation. Website. http:
//qt-project.org/doc/qt-4.8.

http://matrep.parastudios.de/
http://qt-project.org/doc/qt-4.8
http://qt-project.org/doc/qt-4.8

