
Developing a Jump’n’Fly Game
Results of a practical course at the Chair for Computer Graphics and Multimedia

(RWTH Aachen University, Germany)

Jonas Nagy-Kuhlen∗ Lukas Prediger† Adam Malatenski‡

Figure 1: A typical situation in the game. The camera is positioned behind the vehicle controlled by the player.

Abstract

The objective of this pro-practical was to develop a jump’n’fly
game in which the player controls a vehicle that follows a given
track and tries to avoid several obstacles. We freely adapted this
idea and abandoned the jump as well as the fly part.

The player controls a mining vehicle in a cylindrical tunnel. The
vehicle is equipped with a drill to collect crystals while avoiding
stalagmites which have crushed through the tunnel’s walls. Due
to special grip of the wheels, the vehicle can travel freely on the
tunnel’s surface but is not able to lose contact to the ground.

We decided to implement a comic-like look achieved by drawing
black outlines around objects. Furthermore, we emphasized the
cold and dark tunnel atmosphere by use of light and darkness. That
is the reason why we applied dim ambient light and bright light
spots on the vehicle as well as some local point lights along the
track.

Keywords: game programming, jump’n’fly game

∗jonas.nagy-kuhlen@rwth-aachen.de
†lukas.prediger@rwth-aachen.de
‡adam.malatenski@rwth-aachen.de

1 Gameplay

The goal of the game is to collect as many crystals as possible on
a track of fixed length. When the vehicle collects a crystal by sim-
ply driving through it the player is rewarded with points (displayed
in the upper right corner, cf. Figure 1). Collision with stalagmites
results in a loss of points because some crystals fall out of the vehi-
cle’s crystal container. The current highscore is saved locally.

The vehicle accelerates automatically to its maximum speed. Steer-
ing behaviour is controlled by the player. Collision with stalagmites
causes the vehicle to lose speed and bounce off the obstacle. If a
collision with a stalagmite seems to be unavoidable, the player can
activate the vehicle’s drill which enables it to destroy any obstacle
without losing points until the drill needs to cool down.

2 Graphics

We decided to use single pass rendering for lighting effects because
a limited number of lights in the scene seemed to be sufficient for
our purpose. For light calculations we implemented simple Phong
shading. Despite the fact that atmospheric light effects had a high
priority in our group, we went without dynamic shadows because
the dominant light sources, the spot lights attached to the vehi-
cle, were always aligned with the view direction and thus shadows
would be occluded by the objects casting them anyway.



Another high priority was the presentation of the rough tunnel sur-
face. Normal mapping was ineligible because of the flat angle be-
tween surface and camera direction. Hardware tessellation was a
suitable alternative. In addition to the diffuse texture of the tunnel
we created a height map which provides a height value for each
point orthogonal to the surface. The tessellation shader makes use
of this data to subdivide the tunnel mesh and raises or lowers the
vertices according to the height map. Thus we were able to repre-
sent every detail of the rocky structure of the tunnel as geometry.
Out of performance considerations, we introduced dynamic level
of detail. Faces close to the camera are subdivided many times,
whereas faces in the background are not subdivided at all.

To display the outlines of objects we considered edge detection in a
post-processing pass. Anyway, considering performance, we chose
a different approach. Objects with outlines are drawn twice. The
second draw call inflates the object by moving all vertices along
their normals by a constant value. This mesh is then drawn with
reversed faces in black colour, resulting in a nice outline around the
object. This approach works well for simple, approximately convex
geometry. However, it is not applicable for complex geometry, es-
pecially if there are multiple vertices with different normals at the
same location. This is the reason why the vehicle has currently no
outline.

To further enhance visual experience, a particle system has been
implemented. A lot of particles can be drawn at low costs because
each particle is represented by a billboard constructed in the geom-
etry shader, reducing the amount of data transferred to the GPU.

We designed the rendering of text in a similiar manner. The system
is capable of drawing arbitrary strings at given positions in screen
space using sprite fonts. Thus we were able to easily layout a menu
and display the current score in the game.

3 Software Components

We put a lot of effort into designing a flexible, easy to use and ex-
tensible object-oriented architecture as the basis of the game. The
goal was to provide components which would make the implemen-
tation of specific game logic easy and straightforward. Game logic
should be focussed on controls and mechanics and not bother with
rendering, collisions and other low-level details. We believe that
we succeeded in reaching this goal. In the following the two most
important conceptual components of the game are presented.

3.1 Scene System

The scene system forms the base of the game. It allows the cre-
ation of scene nodes which can be placed in a 3D scene and de-
fine a transformation. Scene nodes are hierarchically structured by
parent-child relationships, where nodes define a reference frame for
their descendants. Every high-level object like meshes, lights, parti-
cle emitters, cameras and collision nodes is a scene node. The hier-
archy can be traversed by distinct visitors for different purposes, for
example rendering of meshes or collision detection and resolution.
Altogether, the scene system takes care of all 3D representation and
rendering as well as collision resolution. It is completely indepen-
dent of specific game applications and may be used for other games
as well.

3.2 Level System

The tunnel is made out of level segments of fixed length which
are placed in sequence. Thus an impression of an infinite tunnel
is achieved. Each segment has a well-defined structure and speci-
fies the positions of obstacles, crystals and lights as well as tunnel

geometry. A random sequence of segments forms the tunnel. Man-
agement of the segments is the task of the level system. It loads seg-
ments from XML files and builds their representation in the scene.
Due to performance considerations, only two segments are visible
and active at the same time. When the vehicle reaches the end of a
segment, this segment is discarded and a new segment is attached
behind the remaing one.

4 Assets and Tools

The level segment XML files provide the opportunity to define
complex objects consisting of meshes, textures, shaders and trans-
formations. This makes easy level creation and extension of game
content possible without need to rebuild the game. XML is easy
to read and understand, which further simplifies the process. Un-
fortunately, the game currently offers only limited content because
of limited resources. The major drawback of editing the XML files
manually is that one has no visual feedback, especially concerning
object transformation. That is the reason why we developed a level
editor which allows to place objects on the unrolled tunnel surface
and export the result as a XML level segment file.

5 Conclusion

We believe that at all we did a good job in developing a playable
and enjoyable casual game which offers a solid gameplay experi-
ence. During the course we gained experience in computer graphics
and were able to design and implement a complex software system.
It was a good decision to put effort into a clean architecture as a
base for the game. Developing of the game logic, even at the end
of the development process, did not raise any difficulties. Anyway,
some decisions were not optimal. Chosing the visitor pattern for
data structure traversal made it difficult to extend the object hier-
archy and possibly reduced performance. Furthermore, relying on
a single pass lighting system caused performance issues and made
light distribution limited and inflexible. Deferred rendering would
have been a better choice for lighting purposes. We would have
liked to provide more content and visual effects for the game, but
unfortunately this was not possible to achieve with merely two ac-
tive developers.

6 Distribution of Work

• Scene System: Jonas Nagy-Kuhlen,
Lukas Prediger

• Level System: Lukas Prediger
• Physics and Game Logic: Jonas Nagy-Kuhlen
• Tessellation: Jonas Nagy-Kuhlen,

Lukas Prediger
• Lighting: Jonas Nagy-Kuhlen
• Particles: Jonas Nagy-Kuhlen
• Font and Image Rendering: Lukas Prediger
• Menu and Highscore: Lukas Prediger
• Sprite Graphics: Jonas Nagy-Kuhlen
• Models: Jonas Nagy-Kuhlen,

Adam Malatenski
• Video and Report: Jonas Nagy-Kuhlen,

Lukas Prediger


