Developing a Jump’n’fly Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Julius Elias Oliver Major

Adrian Niewiadomski

Kai Schmitz

ITHSFPHIT

1 The Game

Naspar is a jump’n’fly game that was developed to train some ba-
sics of game programing and computer graphics. In the game you
steer a spaceship with your mouse over an obstacle course to reach
the goal as fast as possible while collecting powerups and score
bonuses.

2 The Engine

2.1 Architecture

The game is programmed based on a game engine that was devel-
oped by our team.

The base class to all objects that can be seen in the world is the
DrawableObject class. It contains geometries, textures and
material parameters as well as methods to load and assemble the
parameters from disk and draw the object. Derived from this class
are the so called data-classes, which hold additional but static data
to the drawable objects. For each data-class there exists an asso-
ciated dynamic class, which has a pointer to its data-class and all
dynamic parameters. There are two main reasons for splitting up
the static and dynamic data of an object in two classes: A better
memory consumption and the more important aspect, that it allows
for a fast copying of objects (cf. Section 2.2).

The core of the engine’s architecture is the Game class, which
implements the Module interface for easy integration in the
lightweight framework, that our main () function delivers. The
Game class holds all data that are related to the Game, such as
the player’s Car object, the Course object, the score and timer
and some more. It also detects pressed buttons and knows how
to calculate the game physics, for example the self made collision
detection mechanism, which tests if the car’s and an object’s two-
dimensional rectangular hitboxes overlap. The class also imple-
ments the Module’s draw () function, which simply delegates
the task to an object of the Renderer class, whose function is
to simply render the game.

External libraries that are used in the implementation of the en-
gine are GLFW (window creation, input polling, multithreading),
pthreads (multithreading), TinyXML (loading settings, object pa-
rameters and track data from disk) and ACGL (drawing to OpenGL,
graphics management).

2.2 Multithreading

The game’s source code offers a mechanism that allows the user to
switch between several multithreading modes while compilation.
To do so, you can edit the MULTITHREADED macro in the Mut-
lithreaded.hh file to be one of the following:

e THREADS_NONE will setup the compiler to create a sin-
glethreaded executable. Game physics and graphics will be
called from the only thread.

e THREADS_POSIX will setup the compiler to create a multi-
threaded executable. The main thread will handle the graph-
ics, while another thread will be created that handles the game
physics. For thread creation and synchronization the pthreads
library is used.

e THREADS_GLFW does the same as THREADS_POSIX, but
uses GLFW for thread creation and synchronization.

The synchronization of the threads takes place within the Game
class. It uses two mutexes, the so called st ructMutex which
locks the class object when it is changed, and the so called
waitMutex which locks the locking of the st ructMutex, so
it serves as a barrier that prevents a thread from locking the struc-
ture again after unlocking it if the other thread is already waiting.
To increase the execution speed and prevent the graphics thread to
hold the mutex lock longer than neccessary, the draw () function
makes a temporary copy of the Game object and then draws it after
releasing the original’s mutexes. This mechanism requires a fast
copying of Game objects, which is obtained by splitting dynamic
from static data as depicted in section 2.1.

The result of the aforementioned implementation results in both
better CPU usage and a higher frame rate.

2.3 Problems

While programming the game we encountered some problems, of
which we want to explain a few crucial and extraordinary examples.

e When using the singlethreaded mode at low frame rates the
collision detection does not work properly, because the car
might simply jump over track objects at high speed without
having their hitboxes overlap at any time. The problem does
not appear while multithreaded execution, but it does however
persist in singlethreaded mode on slow machines.

e As we included multithreading capabilities to our program,
we encountered some objects that moved in wrong directions
or even not at all. We found the problem to be a consequence



of the better physical resolution, that made little double val-
ues for speed and delta time round to O when casted to f1oat.
The solution to the problem was to limit the physical resolu-
tion by inserting short delays in the physics thread. We found
a value of at most 10000 physical frames per second suitable,
so we inserted a delay of 0.1 ms in every turn of the physics
thread.

e Another hard to find bug were random program crashes at

the termination of the GLFW context. As we found out, the
GLFW is not thread safe, which means that calling GLFW
functions from more than one thread in the same context cre-
ates undefined behavior.
The problem could be solved, by deleting two calls to
glfwSetMousePos () from the physics functions, but to
provide the same functionality as before, we needed to reim-
plement a big part of the input polling.

e Finally, we encountered a problem that the graphical frame
rate of the game bursted down with the implementation of
some of the last features. Debugging the code revelaed the
problem to be a result of doing things for the first time and
therefore implementing a suboptimal program design. With
our architecture the Renderer calls draw functions for over
1000 objects with a huge method call overhead of 3 to 5
method calls and 6 matrix calculations per object.

The problem could not be solved in time, so it still remains in
the final release of the game, because solving it would mean
to start over again and implement the game from scratch in
the most parts. However, we have been working on a possible
solution to this issue, a revised program design. In the bet-
ter design the DrawableObJject class does not only save
the static data of an object, but also its model matrix. It pro-
vides methods to move, rotate and scale the object, which then
affect the model matrix directly. The other classes are built
on top of that. The Renderer class keeps track of all ob-
jects in a list of pointers to them. To draw a game scene, the
Renderer would simply call the draw () method for all el-
ements in its list. Therefore the result would be one method
call per object, less passed parameters and only 4 matrices to
be calculated within the method.

We can not tell how much speedup we would gain with the
new design, but we expect frame rates of at least 60 fps in the
final result.

3 The Graphics

Mainly used [Akenine-Moller et al. 2008], slightly used [Shreiner
et al. 2013].

Implemented effects

e Skybox
The skybox was one of our the first implemented effects.
We used plain OpenGL and created our own skymap, which
we had to split into six faces in order to use it with the
GL_TEXTURE_CUBE_MAP texture. We had to disable the
depth test.

e Phong shading
Implemented simple phong shading, with calculation of light
direction and making color dependent on material constants
and incident ray.

e Alpha blending
Made alpha blending dependent on alpha channel in textures.
In our case we used it for a transparent track.

Normalmap

Used normal mapping by creating a TBN-Matrix and trans-
forming from texture space to world space to calculate correct
normals depending on a normal map.

Motion blur

The motion blur effect is implemented with a technique called
per-object or sometime per-pixel blur. This is realised by cre-
ating a velocity map that is computed according to the previ-
ous and current pixel in frustum space and then blurred along
the velocity vector in a post process.

Environment mapping

Environment mapping implemented by rendering six times in
six different directions to an framebuffer object and assigning
the resulting images to a cube map.

Stencil buffer

For the portal’s effect we used the stencil buffer. The idea
behind this is simple: Render the whole scene once and fill
the stencil buffer with zeros, except inside the portals: Here
we set the stencil’s value to one. In the second step we render
the scene with different (higher) shader level if the value is
one. In order to fill the stencil buffer correctly we used two
models: One for the torus and another one for the circular
plane inside the torus. These were treated as a unit.

HUD

On-screen text in order to visualize the current game statistics
with characters rendered from a character-texture to screen by
calculating the corresponding positions on the texture.

Difficulties / Problems

1.

At the beginning, passing the attribute locations from the VAO
to the shader were implemented wrong.

o [t follows that every FBO did not work correctly.
Shadow mapping (only shadow map creation works).

Skybox creation caused some trouble because of deprecated
ACGL function for cubemap creation.

Could not finish tool to precompute tangent and bitangent be-
cause of incorrect calculation. Getting nan although divion by
zero issues were catched.

Solutions

1.

Passed attribute locations moved to draw function (quick so-
lution but dirty, drains fbs etc). A better solution is to pass
them during the shader initialisation.

No solution, yet.
Used plain OpenGL calls.

Computed TBN-Matrix in vertex shader and used it in frag-
mentshader to calculate tangent and bitangent.

References

AKENINE-MOLLER, T., HAINES, E., AND HOFFMAN, N. 2008.
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA.

SHREINER, D., SELLERS, G., KESSENICH, J., AND LICEA-
KANE, B. 2013. OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 4.3. OpenGL. Pearson Ed-
ucation.



