Developing of a Jump and Fly Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Lukas Saretzki *

Christian Schmidt T

Frederik Engels *

Figure 1: Level from the side

Abstract

LostFlying is a Jump’n’Fly game in which the player controls a
robot in levels consisting of five parallel lanes. You have to reach
the end of the map by collecting coins, avoiding cacti and jumping
over holes. Further more the levels can be edited via a png-file to
create your own levels and to customize the difficulty. The above
figure shows a view over a level (cf. Figure 1).

Keywords: game programming, jump and fly game

1 General Information

LostFlying is a game of the genre of *Jump and Fly’-games. Those
games feature a protagonist which moves in a linear world and has
to avoid obstacles and collect some bonus objects. Protagonist of
LostFlying is a high-tech robot which was teleported to a unknown
world and he seeks his way back home. So the main goal of Lost-
Flying is to reach the end of the level, covered with holes and cacti
you have to avoid.

*lukas.saretzki @rwth-aachen.de
Tchristian.schmidt] @rwth-aachen.de
frederik.engels @rwth-aachen.de

Figure 2: Close up on the robot.

2 Features

We will now have a look at the features LostFlying has and see how
they are achieved.



Figure 3: Close up on a cactus.

2.1 Level loading

The level which is played when starting the game is not randomly
generated or written into the source code. It is stored in a color map
as a png-file. The file is then read from the program at start time
and translated into the playable level. The level is made up by small
tiles and each pixel in the color map translates directly into one tile
in the level.

2.2 Noise based textures

While the ground texture is loaded from file, the robot and cacti
have textures which are generated from a random noise. The noise
generation is based of a work by Ian McEwan [McEwan 2011].
Input for the noise function are the coordinates of the model relative
to its own point of origin. The noise then is transformed to fit the
desired look and finally translated to a color used to paint the model.
This is used multiple times in one generation process in order to
achieve a more sophisticated texture.

2.3 Terrain

The terrain surrounding the level are loaded from a gray-scale
height map and are rendered with a small bumpmapping effect.
This gives them quite a natural look. And it is quite easy to generate
bigger terrains to avoid high frequent repeating the the same terrain
design on longer levels.

2.4 Light

The lighting is a basic per-pixel-lighting but as you can see on the
above picture of the robot the shadows and colors are cropped to
give the objects a cartoon-like appearance (cf. Figure 2).

2.5 Collision detection

The collision detection is a self developed and very simple axis-
aligned bounding-boxes algorithm. Each object and also each floor
tile has a box shaped bounding volume and in every frame it is
tested, using these boxes, whether the robot collides with some of
the objects in his surroundings. If a collision is detected the pro-
gram responds according to some given rules such as counting a
the coin or stopping the game.

Figure 4: A in action shot of the particle system.

2.6 Particle system

When the robot jumps he seems to be propelled upwards by a rocket
thrust. This effect is created by using a particle system which
spawns a high number of semi-transparent 2D particles.

These particles automatically align their front to the camera to max-
imize the appeal of the effect. The transparency and number of par-
ticles then create the illusion of a flame coming out of the robot.
The figure ?? shows the particle system in action.

3 Work and Team

After looking at the key features of the game, we will now have a
brief discussion of the team which created the program and how the
work progressed.

The biggest problem with the team was, that the team composition
was subject to major changes. We started as four programmers but
very soon one of them left the team.

About a month after the first meeting we had a new member, Fred-
erik Engels, assigned to our group. Then after the first milestone
was reached the second member left the group.

But communication was also a problem within the group. We used
the “redmine* tool in order to coordinate the work but often it was
justignored and mail contact was very slow way to talk. And so the
workload was not evenly distributed between the group members.

References

MCcEwaN, 1., 2011. 2d simplex noise function.
https://github.com/ashima/webgl-noise.



