Developing ’Lasers”, a Virtual Reality Puzzle Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Daniel Gotzen* Johannes Grof3'

Lea Hiendl* Leon Knollmeyer$

Figure 1: "Lasers” is a 3D puzzle game set in an abandoned and destroyed space station.

Abstract

“Lasers” is a 3D puzzle game for Windows, Mac and Linux, devel-
oped by students in the scope of a practical course at the Chair for
Computer Graphics and Multimedia (RWTH Aachen) with a focus
on graphic programming and virtual reality.

The gameplay is based on a simple puzzle game idea that uses the
environment to redirect a focused beam and activate triggers. This
concept translates well into a first player experience with the Ocu-
lus rift, allowing for precise control of the head-mounted laser.
The objective is to repair an abandoned space station by advancing
through the wrecked parts of it, posing as levels. This setting was
chosen primarily for its potential in graphic design and immersion
in a virtual reality game.

The resulting challenge was the programming of a graphics engine
in C++ using ACGL (Aachen Computer Graphics Library, a high
level abstraction of OpenGL) and other external libraries, and the
creation of the game world and logic.

Keywords: game programming, puzzle, laser, space station, ocu-
lus rift, virtual reality

1 General Information

The concept of our project depended on various factors and
constraints, such as playability in a first player perspective, and
integrating the Oculus rift into the gameplay in a believable
fashion, since immersion is one of the key factors of virtual reality.
Thus we devised the idea of giving the player a tool directly
controllable by his head movements, the laser, as his primary
way of interacting with the environment. We wanted to restrict

*daniel.gotzen @rwth-aachen.de
Tjohannes.gross1 @rwth-aachen.de
*lea.hiendl @rwth-aachen.de
81eon.knollmeyer @rwth-aachen.de

these interactions to the activation of triggers, and create gameplay
through the introduction of mirror objects capable of redirecting
the laser. The context and the meta-goal of repairing an abandoned
space station then where natural consequences of the idea of lasers
and mirrors, a.k.a. ’force fields”.

In the following we want to give an abstract overview of our
development process and the key features we implemented in the
timespan of the course.

In the first stages of the development process, our focus was
mostly on the technical aspects and laying a foundation for various
graphic effects. This included the integration of the Bullet physics
library in our game, and the establishment of supporting structures
for level loading with XML and lightning. This basis was then
expanded to a full fledged graphics pipeline allowing consistent
implementation of various (post-processing) effects.

The next step to make the project an actual game and not just a
graphics demo, was realizing those early level design and logic
ideas. This meant replacing our dummy models and textures with
free and self-made resources.

2 Data Structures

We chose XML for describing our levels as it is easy to write and
read, and could be extended over the time. Additionally it offers
a tree structure, which we adopted for our internal data structures.
A level loader function parses the file and builds an object tree to
match the XML tree by using the composite design. We later dis-
missed storing the geometry as an attribute for every single object,
because loading time and memory usage haven’t been on a reason-
able level. Additionally binding and drawing every objects attached
geometry and textures was a naive approach. We created the man-
ager class GeometryHandler instead, which stores geometry, tex-
tures and shaders, so they just have to be loaded once. Moreover
it creates a list of all drawable objects and sorts it so that fewest
possible bind calls are invoked.

Another advantage of our data structure is the possibility of export-
ing our object tree to XML without loss. Placing objects by coor-
dinates without seeing the result immediately is difficult. We made
objects in the game movable with shortcuts, which makes fine tun-
ing the level easier. After implementing a complete level exporter
in an early version, we didn’t use it because it deleted all comments
and changed layout of the file. Instead we printed single objects as
XML Nodes as debug output.

3 Physics

As our player can move freely, we had to have at least collision
detection. We chose to integrate Bullet Physics. After identifying
what to call and to set to create a physics environment that acts
properly, we connected a Rigid Body to all our level objects. To be
flexible later, we made geometric primitives, concave and convex
hulls usable for collision detection. Now the physics world is im-
plicitly created by the drawable geometry and attributes like mass
and collision shape, defined in the level file.

For player controls, the Bullet Physics btKinematicCharacterCon-
troller class was used at first. It enables climbing stairs and jump-
ing, but avoids moving around other objects. Moreover it has a
number of bugs, so using it was a temporary solution. Later we
implemented basic controls and jumping by accelerating a player
attached Rigid Body and climbing stairs with ray casts to replace it.
The laser is realized with Bullet Physics ray casts. The first one
is emitted in view direction. When a collision with a mirror is de-
tected, the function calls itself recursively with the mirrored direc-
tion. If the mirror is transparent, another ray is emitted behind it in
the original direction. If a trigger is hit, it gets activated.

4 Shading & Lightning

4.1 Phong-Shading

For light we started out simple and implemented the basic Phong
per Fragment Shading Model, with the three components diffuse for
color and intensity, ambient to lighten up the rest of the scene and
specular for highlights that move with the player’s perspective. At
first, we only hardcoded a directional light into the fragment shader
that illuminated all the objects in the scene from a certain direc-
tion. But we wanted different types and more lights in a lightning
system embedded into our XML structure and level loader. Now
a light was completely defined by a pair of objects consisting of a
LightSource class object containing all the lightning properties and
a GeometricObject from the original level structure that defined its
position and model. With that we are able to give any object light
parameters and were able to create lights that moved with the ge-
ometry, such as rotating spotlights that lent the scene a little more
dynamic feel.

4.2 Shadow Mapping

Naturally, after light we implemented shadows for our game. Be-
cause of its simplicity we decided on Shadow Mapping. This meant
we needed an extra render pass for every light source, rendering the
geometry depth-only from the view of that lightsource into a tex-
ture, a shadow map managed by the LightSource class. This texture
then provided us with the means to determine whether something
was lit or shadowed in the actual render pass.

4.3 Normal Mapping

Normalmapping per se was implemented very fast. The normal
texture had to be integrated in loading the level and drawing the

scene. In the fragment shader, the normal was read from this tex-
ture later. More complex was doing normal mapping right. The
normal texture is in normal space, so besides the normal, tangent
and bitangent per vertex had to be calculated while reading the obj
file. We extended the ACGL VertexArrayObjectCreator by writing
an inherited class to do that. Then in fragment shader, the texture-
read normal is converted into this space.

5 Post-Processing Effects

Before applying postprocessing effects, multipass rendering had to
be implemented. Classes for Render to Texture, Texture to Texture
and Combine Two Textures passes were written. They manage
framebuffers, color and depth textures and shaders internally and
are created with a function pointer or input textures. They are
attached to a manager class, to be drawn with one function call.

For Glow, the the scene is drawn with a special shader. It
reads the fragment color from a glow texture or sets it to black if
none exists. The draw function is assigned to a Render to Texture
pass. Then two Texture to Texture passes apply a blur shader, so
that all pixels are blurred in vertical and horizontal direction. The
resulting texture is combined with the original scene draw by a
Combine Two Textures pass.

Implementing FXAA as another postprocessing effect was
chosen primarily because the laser showed noticeable aliasing in
the low resolution Oculus Rift. The idea and the first algorithm
steps were easy to find. Nvidia offers a whitepaper [Lottes January,
2011], that shows where to read pixels from the original texture and
how to determine where to apply blur to smooth edges. Reduced
to a simple version, without fine-tuning, the algorithm could be
written with just a few lines of code. So most of our code is just a
short, commented version of the existing algorithm.

6 Mirrors/ Force Fields

Force fields reflecting the laser and mirroring the whole scene can
be activated completely or set on semi transparency, splitting the
laserbeam.

For each fully activated force field a texture is rendered during a
separate renderpass into rectangle textures. The cameras position is
calculated based on the actual player position and the position and
rotation of the force field.

In order to avoid exponential recursion, mirrors in mirrors only
show a standard force field-texture. Transparent force fields are
only rendered in glowmaps. A parameter decides if this glowmap
has a flickering effect.

7 Content

The main level was designed in blender, using textures, primarily
handpainted in paint.net.

The audio tracks are composed in Fruity Loops Studio.

3D holograms show a miniature level-map on screens. These holo-
grams are drawn in a seperate renderpass and added up to the frame-
buffer during the renderpipeline. The flickering effect is used for
these screens too.

References

LOTTES, T., January, 2011. FXAA-Whitepaper.
http://developer.download.nvidia.com/assets/gamedev/files/sdk/
11/FXAA _WhitePaper.pdf.

