FrequencyShift
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Timothy Blut f

Oliver Kuckertz *

[] [] FrequencyShift

Kevin Diehl * Karl Mertens $

Arthur Drichel ¥ Malte Modlich !

(] FrequencyShift

Figure 1: The teaser image is basically an eye catching image making your report interesting at first glance.

Abstract

FrequencyShift is a cross-platform, multi-player shooter game de-
veloped for the practical course “Dive into Mobile VR/AR Games”.
The basic game idea was to develop a virtual version of the game
laser tag. In order to make the game graphically challenging and
require more tactic during gameplay in comparison to common
shooter games, game world objects and players are each assigned
a frequency, encoded as color, which influences transparency and
collision testing. For example, figure 1 shows the same world from
three different frequencies. Note how the laser collides only with
objects that match its color. In this paper, the development process,
software structure and relevant implementation details of Frequen-
cyShift are explained.

Keywords: game programming, first-person shooter, trans-
parency, forward shading

1 Gameplay

Prior to introducing the high-level gameplay mechanics, the reader
must understand the game’s concept of frequencies. Let it be said
that this game is not physically accurate - this is not how stuff really
works; Star Gate showed us that one must shift in phase, not fre-
quency, in order to pass through other objects - and should not be
cited by any serious physics or optics paper. That being said, let’s
continue:

FrequencyShift adopts common game mechanics of first-person
shooter games. The player can control his position, camera and
body frequency in the world using various input devices. Support
for mouse, gamepad, keyboard and orientation sensor input is im-
plemented.

*oliver.kuckertz@rwth-aachen.de
Ttimothy.blut@rwth-aachen.de
fkevin.diehl @rwth-aachen.de
§karl.mertens @rwth-aachen.de
Yarthur.drichel @rwth-aachen.de

Il malte. modlich@rwth-aachen.de

There are three different frequency modes: None, 3 or 5 frequen-
cies. When the mode is set to none, the render engine and game
model will act like any common first-person shooter. Each mode
implements a distance function between two frequencies: The dis-
tance is the absolute difference of both frequencies’ index values
over the field of available indices. Therefore, when no frequencies
are available, the distance is alway zero; with three frequencies, the
maximum distance is 1, and with five frequencies, the maximum
distance is 2.

In mode 3, the available frequencies are red, green and blue. Mode
5 adds yellow between red and green, and purple between green
and blue. (This again is not physically correct because blue and
purple are swapped, but allows for easier calculations within the
field of available frequencies across all modes.) An additional spe-
cial “white” frequency is defined with a distance of 0 to all other
frequencies.

When performing collision checks, the game model only considers
objects which have a frequency distance of zero to the colliding
object. However, further optimizations described in section 5 have
been applied for collision checking. The distance function is only
used for deriving transparency values.

2 Development process

Development began by creating a proof-of-concept OpenGL appli-
cation that could be run under both iOS and OS X with minimal
differences in code. Patching up differences was done using the
C preprocessor. Next, basic implementations of the components
FSEngine and FSGame were added. A message-passing interface
was created to let the components communicate through pointers
that had been shared through the host process. From then on, de-
velopment of FSEngine and FSGame progressed independently for
several months. Once game model and engine were completed, a
graphical interpretation of the world was developed and added to
FSEngine.

3 Platform abstraction

Input mapping

Platform-specific host Sensor input

GL context setup

File system abstraction

Common data formats

Low-level platform abstraction

Log writing and utilities

In our group, only two out of six people had permanent access
to Apple desktop hardware, and only one out of six had perma-
nent access to an iPhone 6. In order to still function as a team,
we decided on implementing abstraction layers which encapsule
platform-specific behavior and setup routines. IDE project files and
makefiles for all supported platforms were created and maintained
independently.

4 Rendering pipeline

4.1 Main rendering

Transparency is a key gameplay concept; in order to correctly ap-
ply effects to transparent objects, the renderer uses forward shad-
ing. Support for opaque and transparent objects is implemented
separately; grouping is done using a render bucket concept. A frus-
tum culling phase filters all invisible objects when rendering from
buckets.

The rendering pipeline operates in 4 seperate passes: First, all
opaque objects are rendered and the depthbuffer is filled. For all
following passes, writing to the depthbuffer is disabled, but reading
is enabled so that pixels that would be hidden by an opaque object
are not processed by the fragment shaders. A skybox is rendered
during the second pass. In the third pass, all objects which require
additive blending (such as particle systems and laser beams) are
rendered. Particles are batched into a single buffer and rendered
with instanced billboards. In the fourth pass, all the transparent ob-
jects are rendered with alpha blending. The objects are sorted from
back to front so that objects in the back of the scene can be seen
through closer objects.

4.2 Post processing

Rendering of laser beams works by rendering a beam mesh onto
a low resolution texture, which is then blurred with an optimized
gaussian blur shader described under section 4.3. The blurred im-
age is rendered onto the final image along with additional post-
processing effects, including screen tinitng and a vignette texture.
Rendering the blurred images onto the lasers achieves a glowing
look.

The screen tinting effect is used for tinting the final image in the
current frequency color. Additionally, the effect is applied to slowly
fade the scene to black when the player dies. The vignette texture
is used as a red colored hit inidicator.

4.3 Optimizations

Blurring is improved by stretching a low resolution using linear
sampling. This approach saves additional bandwidth [Int July,
2014]. The renderer batches up to 4 lights into a single draw call to
reduce the amount of overdraw. This greatly improves the perfor-
mance on devices with low fillrate. Furthermore point lights are
also culled based on camera frustum so no lights are computed
which would be invisible from the camera perspective.

In order to avoid synchronization between the CPU and GPU, all
lights and object transformations are uploaded into large buffers
before starting the rendering process. Many matrix computations
are avoided due to the engine’s event based design. When an event
affects a specific transformation, it is recomputed on demand.

5 Physics

The Bullet Physics library [Bul June, 2015] is used for collision
detection and ray tracing in FSGame. Engine and host components
do not interact with Bullet Physics, but merely receive messages
generated by FSGame due to physics events.

Initial attempts at integrating Bullet Physics with our frequency
concept failed due to incompatibilities with Bullet’s built-in col-
lision group and mask system. Either expensive (due to cache
misses) function calls would have to be made in a Broadphase call-
back, or redundant objects would have to be created to fit into Bul-
let’s group system. Neither option was feasable.

The final solution which resulted in improved performance when
compared to frequencies being entirely absent was to emulate the
frequency distance function using the bitwise and operator. All data
required for this simple computation step could be stored in a Bullet
collision proxy object and therefore the CPU’s internal caches.

6 Map preprocessor

A map compiler was written in order to compensate for long load
times. Originally, loading the map “Container” with an unopti-
mized build of FrequencyShip took up to 40 seconds on the iPhone
6. The load times could be greatly reduced by preprocessing the
map: The Wavefront Object file is parsed by the compiler, re-
encoded to a format used by the game model, and optionally pre-
processed by Bullet Physics. The resulting binary file could be
loaded into the memory using the “mmap” syscall, which results
in asynchronous on-demand loading of the map through the oper-
ating system kernel. After applying these optimizations, map load
times have been reduced to less than two seconds.

7 References

References

June, 2015. Bullet physics library. http://bulletphysics.org/.

July, 2014. An investigation of fast real-time gpu-based
image blur algorithms. https://software.intel.com/en-
us/blogs/2014/07/15/an-investigation-of-fast-real-time-gpu-
based-image-blur-algorithms.

