Dive into mobile VR
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Rizwan Ali* Bastian Jonas'

Jonathan Wendt?

Florian Wehling®

Figure 1: a) ingame menu, b) view of an advanced level

Abstract

”Virtual Workshop” is a virtual reality game for the iPhone. Based
on a hand-detection, position- and orientation tracking system you
can solve physic-based puzzles in a virtual 3D scene. For maxi-
mum immersion-effect, the game is meant to be played with 3D
stereoscopic VR glasses.

Keywords: game programming, physic game, virtual reality, aug-
mentend reality, iphone, head mounted display, hand detection,
opengl, real time graphic, room tracking, position detection

1 General Information

”Virtual Workshop” is a virtual reality game developed in the prac-
tical course “’Dive into mobile VR” at the Computer Graphics and
Multimedia chair of the RWTH-Aachen. The game consists of sev-
eral levels, each representing an unique puzzle. In the first phase,
the placement phase, the player has to move given items to the cor-
rect spots. Then, in the second phase, the underlying physic-engine
takes control over all objects in the scene and simulates what will
happen with them. The puzzle is solved, if the target-task is ful-
filled. The technical challenges and solutions are described in the
following sections.

2 Technical Details

2.1 Drawing the virtual Environment

The whole game is developed for IOS 8.x and therefor the under-
lying graphic API is OpenGL ES [Ope c]. We choose to use the

*ali.rizwan @rwth-aachen.de
Thastian.jonas @rwth-aachen.de
tjonathan.wendt@rwth-aachen.de
$florian.wehling@rwth-aachen.de

version 3.0 of OpenGL ES to be able to use some more advanced
features. The challenge for our graphic engine is drawing a variety
of objects in a way that the player has the feeling of being part of
the scene. Furthermore, the graphic system should be one of the
first working parts in the development process and thus has to be
as flexible as possible for upcoming design decisions (e.g graphic
materials or effects). Because of that we decided to implement a
script-driven material and effect system which allows us to quickly
introduce new visual effects and enhances the flexibility of the en-
tire rendering system.

As we are targeting a cartoonish style (2.5) with the textures of
our game, we not only implemented per-fragment-lighting and ba-
sic texturing techniques, but also added a few advanced rendering
techniques like shadow mapping, particle systems and transparency
to support it. To reduce aliasing and to show the power of our effect
system, a simple “Fast Approximate Antialiasing” (FXAA) is part
of our rendering engine as well.

Figure 2: Move in the game world with dive glasses and green
gloves

2.2 Moving in the Game World

To solve the problem of moving in the game world without access
to the phone’s touchscreen, we chose to make use of the tracking
library supplied by the chair. It allows us to locate ourselves within
a room by finding reference points within the camera image and
estimating the camera pose from them. For this to work we first
require a point cloud reconstruction with descriptors for each point
which has to be generated from imagery of the location.

In theory we can achieve a fairly exact localisation using this tech-
nique, however we face inaccuracies due to the limited computation
power of the system. To overcome them, we chose to implement
a Kalman filter [Kalman 1960]. This filter is capable of not only
filling in gaps in the data or pauses between measurements, but
also predict a small time into the future, so that the movement is
smoothed fairly well. Still, a small amount of jitter is left as further
smoothing would make the tracking irresponsive.

2.3 Physics and Game Logic

As the whole game is physic driven, we choose to use the real-time
physic simulation engine Bullet-Physics [BUL] to simulate our vir-
tual environment.

To create an accurate simulation, every object within the game is
represented by a rough body in the physics engine. The interaction
is then handled by the engine and updates objects positions each
game tick. This way we can correctly simulate gravity, bounciness
and friction of objects. Additionally we are able to implement fixed
connections between objects as well as hinges between objects by
restricting possible movements.

Many interactions in the game world were not realisable by the Bul-
let engine, therefore we designed algorithms to calculate gear inter-
action and the transported force, e.g., using conveyor belts and also
the transport of heat (e.g. lighting a cannon fuse or powering a so-
lar panel) and electricity (e.g. switches, motors, ...). Any resulting
forces are given to the physics engine to be applied to the respective
objects. This way we can simulate firing a cannon or exploding a
bomb triggered by heat transport.

Additionally, we implemented the possibility to have “hanging” ca-
bles which are calculated physically correct in real-time based on
hyperbolic cosine curves. The whole game can be controlled (e.g.,
changing levels or starting and resetting the physics) with a menu
(Figure 1 a)) that is integrated in the room model which can be
controlled with our unique interaction system explained in the fol-
lowing section.

2.4 Hand-Tracking

An essential and very critical part is the hand-tracking. The whole
game is based on the interaction of the players hands with the vir-
tual environment, as such the developed hand tracking system has
to recognise the position of the hand and some gestures the player
performs.

The hand tracking system has to solve several problems: As the
iPhone has only one backside camera, calculating a 3D position
from only a single image is hard. Also it has to differentiate be-
tween one or two hands and the background which is computation-
ally expensive. Finally it has also to detect gestures for closing
and opening the hand. The developed hand tracker uses the Open
Source Computer Vision (OpenCV) Framework to process the cam-
era image to determine the hands position and gesture. The algo-
rithm uses colour distinction to separate hands from other objects
in the filmed environment. It then detects contours and defects to
count the opened fingers. Finally the relative hand position is de-
termined by the contours bounding box. To fill any gaps in the
detected data and generally smooth it, we use the same filter that

we already used for the position estimation.

This allows us to track multiple hands at once as long as they have
a distinct colour difference to the background. For this reason we
chose to wear green gloves while playing the game.

2.5 Asset Creation and Level Design

We designed the room, objects and levels to have a cartoonish char-
acter. The texture are essential to this style and have been chosen to
specifically support it. This way we were able to design assets with
a small number of polygons without them looking out of place. We
created three levels with increasing difficulty to allow the user to
easily understand and learn the game and then apply this knowl-
edge later on. They focus mainly on introducing game mechanics
and are not too hard, but in the future one could design challenging
puzzles for users to solve.

The level files are directly exported from 3DS Max [3DS] to
a custom xml-based file format and loaded into the game using
TinyXML [Tin].

3 External Libraries and Tools

The game is implemented with the help of several external libraries
and tools:

1. OpenGL ES 3.0 is the underlying graphic API. [Ope c]
Bullet simulates our physics. [BUL]

OpenAL brings the 3D Sound effects. [Ope b]
OpenCV helps to detect the players hands. [Ope a]

IS IS

Eigen and CML simplifies the math behind the game. [Eig],
[CML]

. Artemis manages the zoo of entities. [Art]

6

7. TinyXML makes our xml-files readable. [Tin]
8. Freelmage brings textures to our objects. [Fre]
9

. 3DS Max brings the ideas to life. [3DS]

References

Autodesk 3ds max.

Artemis c++ - entity system.
Bullet physics library.
Configurable math library.
Eigen math library.
Freeimage.

KALMAN, R. E. 1960. A new approach to linear filtering and
prediction problems. Journal of Fluids Engineering 82, 1, 35—
45.

Open source compute vision.

Openal - cross platform 3d audio.

Opengl es 3.0. https://www.khronos.org/opengles/.
Tinyxml 2.

