Developing a MarbleRace Game: StarBall
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Felix Hermsen™

Marius Wins’

Pedro Louback Castilhot

Figure 1: An example of StarBall’s gameplay.

Abstract

This report describes the development of a game called StarBall
as part of the “Developing a MarbleRace Game” practical project.
Our game implements several techniques in order to achieve high
graphical quality coupled with simple but challenging gameplay,
while keeping the underlying design minimalistic. (cf. Figure 1).
These techniques will be presented as part of this report.

Keywords: game programming, survival racing, glow, motion
blur, deferred shading, real-time rendering

1 Gameplay Description

StarBall is a game of the survival racing genre, as exemplified by
games such as Nitronic Rush [Nit 2011]. As such, the objective of
the game is to reach the finish line safely. The challenge in achiev-
ing this objective is provided by the hazardous tracks of the game.

The player takes control of a marble-shaped mechanical being
which must navigate complex tracks in a space-like environment
by rolling. The tracks are typically flat or half-pipe shaped with

*felix.hermsen @rwth-aachen.de
T marius.wins @rwth-aachen.de
fplc@cin.ufpe.br

many curves and ramps, and no guard rails are provided. There-
fore, the player must be careful in their actions, lest they fall off the
track.

2 Program Architecture

StarBall is structured as 3 main parts: The graphics engine, the
physics engine, and the interaction layer. The functionality of each
part shall be explained separately.

2.1 Graphics Engine Functionality

The Graphics Engine is responsible for generating the game’s
graphics. It is structured as a pipeline which takes inputs from
the Physics Engine, and through many steps generates the image
shown onscreen as output. The steps undertaken in the graphics pi-
pline are clarified in section 4. The Graphics Engine is also able to
automatically set the in-game camera without any player input.

2.2 Physics Engine Functionality

The Physics Engine computes the player’s interactions with the en-
vironment. Using the Bullet Physics library, it runs a physics sim-
ulation where the player and the current track are present as solid
objects and sends the motion state and position of the player to



(a) (b)

Figure 2: (a): Scene rendered with glow disabled. (b): Same scene
with glow enabled.

the Graphics Engine, so that the game state can be rendered to the
screen. The physics engine also handles eventboxes - rectangular
box-shaped areas of 3D space where some effect is applied to the
ball. Among possible effects are speed up, slow down, jumps, and
player “death” (resetting the current level)

2.3 Interaction Layer Functionality

The Interaction Layer deals with the player’s inputs. Using the
GLFW utility library, it manages the game window, reads keyboard
inputs and sends this data to the Physics Engine so that it might
properly update the simulation.

3 Level Loading

Each level (track) is simply defined as a file containing the 3D poly-
gon data for the track. The data from this file is used by the Graph-
ics Engine to draw the track on the screen, and read by the Physics
Engine using a custom loader in order to generate a solid object for
the physics simulation. Eventbox data for each level may option-
ally be loaded. The polygon data used for the project was generated
by us using Blender, while the eventbox data is entered by hand for
each level.

4 Graphics

As previously mentioned, the graphics engine follows a pipeline
structure. There are two main stages corresponding to the two main
rendering passes, and several minor steps corresponding to graph-
ical effects. Rendering uses deferred shading, specifically the G-
Buffer approach [Saito and Takahashi 1990].

In this approach, we write scene properties needed for the light-
ing computation into a series of textures (the G-Buffer) and then in
a second rendering pass the lighted scene is computed from these
textures. The shading model employed is Phong Shading [Phong
1975]. After computing the lighted scene, motion blur and glow
are added onto it following the processes detailed below.

We chose to use the G-Buffer approach not only in order to eas-
ily support arbitrary numbers of lights without a significant perfor-
mance hit, but also to simplify the implementation of the graphics
effects we use, as it becomes trivial to combine the output of several
frames or renderings during the second pass.

4.1 Graphics Effects

StarBall makes use of two major graphics effects: Glow and Motion
Blur.

411 Glow

The use of the glow effect is crucial for the surreal environments of
StarBall. Our implementation of glow is based on the implemen-

(b)

Figure 3: (a): Low level of motion blur. (b): High level of motion
blur.

tation described in Chapter 21 of “GPU Gems” [Fernando 2004].
Namely, the glowing parts of the scene are rendered into a smaller
glow target and blurred. This technique leads to artifacts in dis-
tant regions due to these regions possibly not being rendered in a
continuous fashion in the smaller target, we add a distance-based
exponential fog to the scene. In order to further reduce artifacting
and improve aesthetics, a small motion blur, analogous in imple-
mentation to that described in the next section, is applied to the
glow target, which results in a pleasant visual effect. (cf. Figure 2)

4.1.2 Motion Blur

The motion blur effect is employed by us in order to increase the
sense of speed imparted by the game to the player. Our motion blur
effect is achieved by maintaining an accumulator texture to which
previously rendered frames are added. Each frame is added to this
accumulator with an opacity based on the current speed of the ball,
effectively making the blur disappear below a certain “low thresh-
old” speed and making the blurring not increase anymore above
a “high threshold” speed. The amount of blur when the player’s
speed is between the threshold speeds is determined by cubic Her-
mite interpolation between a constant “low level” and a constant
“high level” of blur. (cf. Figure 3)

4.2 Camera Control

As mentioned in section 2.1, the graphics engine is able to auto-
matically set the camera without the player’s input. This is done
by taking the direction of the ball’s movement and interpolating
between the camera’s current orientation and the ball’s movement
orientation, such that the camera orientation is always close to the
ball’s, but very fast orientation changes are filtered out.

The position of the camera is set such that the player is always
looking at the ball from behind, and the distance from the ball to
the camera is set according to the ball’s speed - when the ball’s
speed is higher, the shot becomes wider, and conversely as the ball
slows down the camera closes in.

References

FERNANDO, R. 2004. Real-time glow. In GPU Gems: Program-
ming Techniques, Tips and Tricks for Real-Time Graphics, GPU
Gems. Pearson Higher Education, ch. 21.

2011. Nitronic rush. http://nitronic-rush.com.

PHONG, B. T. 1975. Illumination for computer generated pictures.
Commun. ACM 18, 6 (June), 311-317.

SAITo, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-d shapes. SIGGRAPH Comput. Graph. 24, 4 (Sept.), 197-
206.



