Developing an Arcade Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Sandra Hicks*

Simon Hiitz?

Philipp Rainisch?

Figure 1: Situation at the start of a new game in Catness.

Abstract

This report is about the game ’Catness’, which was developed in
this year’s practical course. The principle of the game is to play
a hungry cat which tries to catch mice in a labyrinth. The goal is
to catch as many mice as possible in a limited time. Life can be
made either easier or harder by collecting powerups - this depends
on your luck.

Keywords: game programming, arcade game

1 Game Concept

The main inspiration for our game is the old Windows”™ 98
Screensaver in which you run through a 3D maze. As our group
mostly contained of cat fans, we decided that the protagonist must
be a cat.

As you can see in Picture 1 one can see the cat with 9 lives which
runs through the labyrinth to catch mice. The goal is to eat as many
mice as possible in three minutes. Powerups disguised as birds can

*sandra.hicks @rwth-aachen.de
Tsimon.huetz@rwth-aachen.de
Ephilipp.rainisch@rwth-aachen.de

alter the gameplay in positive as well as negative ways. Among the
powerups there is also a bomb, which can be used to destroy walls.

2 What we’ve done

2.1 Labyrinth

For our first implementation, we created a static labyrinth contain-
ing of walls and floors. Later, this labyrinth is generated randomly.
At first our implemented algorithm builds a labyrinth like a star.
At the beginning of the creation, it only has a starting point. From
there all ways branch off. The decision in which direction the path
goes on is taken randomly. After the creation of this star, the al-
gorithm traverses the labyrinth and looks for dead ends. If one is
found, the algorithm checks in which direction one of the walls can
be destroyed to get to another path. This wall then is destroyed so
we can guarantee that there are no dead ends. This algorithm can
create labyrinths with an uneven side length. [Maz ; Dae ; Pri | As
our labyrinth is generated randomly, our other gameplay elements
must as well be spawned randomly. Among those are the torches,
powerups and mice.

2.2 Collision

The cat is implemented with a collision box for the collision with
walls, and mice and powerups are collected if they enter a certain
radius around the cat.

2.3 Adding some intelligence

To make catching mice a little more a challenge, the mice have
a certain intelligence. If the cat is far away, the mice will move
randomly. But if the cat is near, the mice try to run away. This is
achieved by implementing depth-first search. Up to a depth of 4
floor blocks, the maximum air-line distance between cat and mouse
is chosen by the mouse to go on.

2.4 Powerups

To alter the gameplay powerups can be collected. These include
positive ones as well as negative ones. Examples for positive
powerups are ’fast cat’ and 'freeze mice’. Negative powerups are
’catnip’, which disturbs the vision of the player, *baby cat’ which
shrinks the cat and stops the mice from running away. The cat can
then be eaten by mice loosing lives. Beside the PowerUps we im-
plemented bombs, which one can use to destroy walls and bomb
your way free. The explode algorithm looks up which walls (up,
down, left, right) can be destroyed. The range of the bomb is one
field. If the cat is in this radius, the cat will loose a live. If a bomb
destroys a wall with a torch, the torch will be respawned at another
wall.

2.5 Content creation

To make the world come to life, we need models and textures for
all the required objects. This includes the wall and floor blocks
of the labyrinth, our actors, the cat, mouse and bird, the interface
characters and symbols as well as the logo. The texture of the walls
and floors are from [Sph] and the model and texture of the powerup
bird are from [Hum]. All other models and textures were created
by us in blender, exported as .obj and .jpg respectively and then
imported and used in our game.

2.6 Change of scenes

In addition to the game itself, we implemented a ’Gameover’ screen
as well as a menu which shows the logo of the game and enables the
user to start a new game or exit. If a new game is started, a totally
new labyrinth is created.

3 Graphics
3.1 Lightning, shaders and shadows

In our game we employ different shaders. These range from simple
ones to generate a depth texture for shadow maps to more complex
ones which also compute a simple form of lighting and allow tex-
turing. We only made use of vertex and fragment shaders, which
also allows our game to run on older graphic cards. In our first im-
plementation we used toon shading as our game should be in comic
style, but a test with a basic implementation of phong shading gave
better results and thus is used.

As the labyrinth contains torches to illuminate the scene, we also
implemented shadows. At first we emulated the cube map with
six simple shadow-maps. This resulted in good looking shadows
which were quite costly on the computation part and thus did not
allow more than four light sources. To allow more light sources, we

Figure 2: This scene shows how shadows are casted from two light
sources and the torch particle system.

recalculate the shadow-maps every second frame. This basically
allows twice as many light sources without a visible performance
hit iff the game runs at around 60 frames per second. If the game
runs slower however, one can see that the shadows have a certain
delay. The second optimisation is a direct trade off between quality
and speed. Instead of covering the shadows with six shadow-maps
which cover 90 degrees each, we use three shadow maps which
cover about 120 degrees ignoring the top as we do not have a ceil-
ing. This again doubles the calculation speed, but makes shadows
more inaccurate at large distances.

3.2 Lots of Particles

As another graphical effect we created a particle system which can
be used for various purposes. The first application is a small dust
cloud at the feet of the cat if it walks. The second is the flame of the
torches and thirdly a big cloud of dust if a bomb explodes. The first
attempt was to draw the particles by instancing, but as the number
of particles was very limited and the drawing costly, we changed to
using a single Vertexarrayobject per system for drawing all particles
at once.

3.3 Interface

For a comfortable gameplay, we implemented an interface which
shows the game’s current state to the player. The interface shows
the number of cat lives in the top left corner, the time which is
left top middle and the score in the top right corner. If a bomb
is collected, those are shown in the bottom left corner, and active
powerups are listed left with an individual icon and a bar which
shows how much active time is left. To make navigation in the
labyrinth easier for the player, we also added a minimap to the in-
terface. For this we render the fully lighted scene from above the
cat into a frame buffer object, then use the resulting texture for a
quadratic surface in the game.

References

Deadalus 2.5. http://www.astrolog.org/labyrnth/
daedalus.htm.

Hummingbird. http://www.3dvia.com/content/
F5E94EEBFDCFELF3.

Maze generation algorithm. http://en.wikipedia.org/
wiki/Maze_generation_algorithm.

Maze generation: Prim’s algorithm.
//weblog. jamisbuck.org/2011/1/10/
maze-generation-prim-s—-algorithm.

http:

Sphax texture pack. http://bdcraft.net/.

http://www.astrolog.org/labyrnth/daedalus.htm
http://www.astrolog.org/labyrnth/daedalus.htm
http://www.3dvia.com/content/F5E94EEBFDCFE1F3
http://www.3dvia.com/content/F5E94EEBFDCFE1F3
http://en.wikipedia.org/wiki/Maze_generation_algorithm
http://en.wikipedia.org/wiki/Maze_generation_algorithm
http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
http://weblog.jamisbuck.org/2011/1/10/maze-generation-prim-s-algorithm
http://bdcraft.net/

