Developing a Marble Race Game
Results of a practical course at the Chair for Computer Graphics and Multimedia
(RWTH Aachen University, Germany)

Robert Lau™*

Benedikt Scholtes’

Jan Hiusler?

Abstract

As part of the practical course *Developing a Marble Race Game’
we developed a marble race game where you have to reach the goal
in a futuristic, maze-like environment - in the fastest time possible.
One of our main reference points was the movie Tron’, which is
characterized by a futuristic style - involving dark environments lit
up by bright lights.

1 Implementation details

In this section and its subsections the details of our implementation
are presented.

1.1 General Structure

We made heavy use of classes in our code, mainly to achieve a
logical separation for different parts of our code. After the creation
of the window and loading of the main settings, the Menu class
takes over and draws the menu. Starting and stopping a game is
simply achieved by creating and destructing a new Game object.
This eliminates problems with the Physicsengine, every new game
is loaded from scratch, and no old physics objects are left. The
Game class takes care of creating and calling everything needed to
play the game, from Input Callbacks and Levelloading to the main
draw loop. After a finished game, program returns to the menu,
destroys the Game class and, if neccessary, starts a new game.

*robert.lau @rwth-aachen.de
Tbenedikt.scholtes @rwth-aachen.de
tjan.haeusler @rwth-aachen.de

1.2 World & Physics

In our implementation the environment is wrapped into one *World’
class which manages object storing and - if necessary - the simula-
tion of the physics of those.

For objects we differ between a pure world object, which does not
get physics simulated and will only get rendered, and as a subclass
physical objects, which - as soon as added to the world - gets reg-
istered with the physics engine[bul October, 2013]. All the various
data necessary for each and every world object - position, rotation,
geometry and so on - is stored in new instances object class and
updated after every tick using a Bullet built-in callback.

1.3 Camera movement

The camera is controlled by a constraint that gets updated every
tick. We use the position based method described by [Miiller et al.
2007].

1.4 Terrain

The terrain in our implementation consists of single cubes. It is
generated from an amount of image files, one for each layer, where
the colors are depicting the type of entity at that position - start,
terrain cube, finish, booster, and so on. For each white Pixel, the
Terraingenerator generates the vertices and edges for a single Cube,
and adds it to the level in the right location. The advantage of this
lies in the modularity of this system. With minimal work you can
add a new type of block, like a teleporter for example. You have
to define a new colour, which represents this new block, add a new
case to the levelgenerator, and create a new callback function. This
gets then automatically called each time bullet registers a collision
with the Ball.



1.5 Configuration

We use a static json Library (rapidjson[rap January, 2014]) for our
general and level specific configuration files. We can configure a
multitude of settings here, which are all loaded once at the program
start and are accessible by all classes via Getter Functions. Besides
Locations for all Textures, Shaders and so on, we save the assets we
want to use for each object. This helped changing and experiment-
ing with different Shaders without having to recompile the game
every time you want to change a Shader or switch to another level.
Furthermore, we save Keybindings, Physics attributes like gravity
and maximum speed of the marble and graphics settings, for exam-
ple the amount of MSAA or Anisotropy Filtering.

1.6 Effects

The very first an most basic effect we have implemented is the
phong shader to start with some illumination. There we have re-
placed the ambient term by the texture loading because we wanted
a high overall illumination. For the same reason we have deleted the
diffuse term as well as the attenuation. What’s left is the specular
term as presented in the “Basic Techniques in Computer Graphics”
lecture to create a spotlight.

The next effect we used was the simplex noise (cf. Figure 2)[Gus-
tavson 2005]. The code itself was taken from [sim March, 2011],
but the adjustment to make it well defined everywhere was still
challenging. Finally we have figured out to take a 3 dimensional
simplex filter with the x and z coordinates subtracted by the y coor-
dinate as first two inputs and the time as third input.

Our last effect was the real time glow (cf. Figure 1)[gpu September,
2007]. It was done by deferred shading with two output textures.
The first one was the render result the second was the glow texture
with the parts to apply the glow to. The second image was then
rendered twice through a Gaussian noise filter and finally added to
the first render output as final result.

2 Problems and their solutions

During our work on the project we encountered various problems
we had to face and solve. Especially in the early stages we had
to get familiar the whole concepts of OpenGL and Bullet and
therefore our technical knowledge was limited.

For instance the problem of applying the model, view and trans-
form matrices in the correct order was causing us headaches as the
ball was rotating around the world center instead of its own center
at first.

Furthermore the correct integration and correlation of Bullet and
the rendered world demanded alot of work at first.

Another problem was the aliasing of our textures, caused by the
very high angle the camera has to the surface of around 160°. It
was solved by applying the anisotropic texture filtering to get a
clear surface even in the distance.

2.1 Persistent problems

The final release still *features’ some bugs and glitches.

For instance we randomly encounter the ball falling through the
terrain, probably caused by some kind of race condition, as this
usually is fixed by restarting the game.

Also the performance is somewhat bad in more complex levels, as
we generate a new physics simulated box for each terrain block
instead of combining those to primitives of bigger size.

Figure 2: Simplex3D Effect

References

October, 2013. Bullet physics library.
http://www.bulletphysics.org.

September, 2007. Real time glow.

http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html.

GUSTAVSON, S. 2005. Simplex noise demystified. Linkoping
University, Linkoping, Sweden, Research Report.

MULLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2007. Position based dynamics. Journal of Visual
Communication and Image Representation 18, 2, 109-118.

January, 2014. rapidjson. https://github.com/miloyip/rapidjson.

March, 2011. Shader library.
http://www.geeks3d.com/20110317/shader-library-simplex-
noise-glsl-opengl.



